ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «РОССИЙСКИЕ ЖЕЛЕЗНЫЕ ДОРОГИ» ПРОЕКТНО-КОНСТРУКТОРСКОЕ БЮРО ВАГОННОГО ХОЗЯЙСТВА ФИЛИАЛ ОАО «РЖД»

Утвержден: Советом по железнодорожному транспорту СНГ 27 января 2010 года

РУКОВОДЯЩИЙ ДОКУМЕНТ

РЕМОНТ ТЕЛЕЖЕК ГРУЗОВЫХ ВАГОНОВ МОДЕЛИ 18-100 С УСТАНОВКОЙ ИЗНОСОСТОЙКИХ ЭЛЕМЕНТОВ В УЗЛАХ ТРЕНИЯ

РД 32 ЦВ 072-2009

Согласован:

Комиссией Совета по железнодорожному транспорту полномочных специалистов вагонного хозяйства железнодорожных администраций 27 января 2010 года

Предисловие

1. Разработан Проектно-конструкторским бюро вагонного хозяйства (ПКБ ЦВ) филиал ОАО "РЖД". Ответственный за выпуск: Пашарин С.И.

Внесен: Дирекцией Совета по железнодорожному транспорту государствучастников Содружества.

- 2.Принят Комиссией Совета по железнодорожному транспорту полномочных специалистов вагонного хозяйства железнодорожных администраций Протокол от 27 29 января 2010 г.
 - 3.Введен в действие 1 июля 2010 года.
- 4.Взамен РД 32 ЦВ 072-2004 Руководящий документ "Инструкция по ремонту тележек грузовых вагонов модели 18-100 с установкой износостойких элементов в узлах трения".

Настоящий Руководящий документ не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения ОАО "РЖД".

СОДЕРЖАНИЕ

1 ОБЩИЕ ПОЛОЖЕНИЯ	7
2 ОРГАНИЗАЦИЯ РЕМОНТНЫХ РАБОТ	8
3 ОХРАНА ТРУДА	9
4 РЕМОНТ НАДРЕССОРНОЙ БАЛКИ	10
5 РЕМОНТ УЗЛА «КЛИН-ФРИКЦИОННАЯ ПЛАНКА» РЕССОРНОГО КОМПЛЕКТА	13
6 РЕМОНТ БОКОВОЙ РАМЫ	14
7 РЕМОНТ КОРПУСОВ БУКС	15
8 ИЗМЕРЕНИЕ И ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ДЛЯ ВЫПОЛНЕНИЯ НАПЛАВОЧНЫХ РАБОТ И МЕХАНИЧЕСКОЙ ОБРАБОТКИ	15
9 ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ НАПЛАВОЧНЫХ И СВАРОЧНЫХ РАБОТ	16
10 ТРЕБОВАНИЯ К ДЕТАЛЯМ, УСТАНАВЛИВАЕМЫМ ПРИ РЕМОНТЕ УСТАНОВКОЙ ИЗНОСОСТОЙКИХ ЭЛЕМЕНТОВ ТЕЛЕЖКИ МОДЕЛИ 18-100	
11 КОНТРОЛЬ КАЧЕСТВА РЕМОНТА ТЕЛЕЖЕК С УСТАНОВКОЙ ИЗНОСОСТОЙКИХ ЭЛЕМЕНТОВ И ПРИЕМКА ТЕЛЕЖЕК ПОСЛЕ РЕМОНТА	18
12 ГАРАНТИЯ РЕМОНТНЫХ ПРЕДПРИЯТИЙ НА РЕМОНТ ТЕЛЕЖКИ МОДЕЛИ 18-100 С УСТАНОВКОЙ ИЗНОСОСТОЙКИХ ЭЛЕМЕНТОВ	19
13 ВЫХОДНОЙ КОНТРОЛЬ ТЕЛЕЖЕК, ОТРЕМОНТИРОВАННЫХ С УСТАНОВКОЙ ИЗНОСОСТОЙКИХ ЭЛЕМЕНТОВ	19
Приложение А	21
Приложение Б	23

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Настоящее «Руководство по ремонту тележек грузовых вагонов модели 18-100 с установкой износостойких элементов в узлах трения» (далее Руководство) предназначено для применения при плановых видах ремонта на вагоноремонтных предприятиях в части ремонта и восстановления надрессорных балок, боковых рам, фрикционного узла гасителей колебаний, корпусов букс.

Техническое обслуживание и ремонт тележек должны производиться на вагоноремонтных предприятиях, имеющих соответствующее оборудование, квалифицированный персонал и имеющих право на проведение указанных работ.

На железных дорогах Стран СНГ, Латвии, Литвы, Эстонии технологии обслуживания и ремонта тележек на вагоноремонтных предприятиях устанавливаются компетентными органами Железнодорожных Администраций. Изготовление и сборка тележки и её узлов регламентируется технологическими процессами этих предприятий, техническими требованиями, предъявляемыми к тележкам при изготовлении и другой действующей нормативной документацией.

- 1.2 Руководство определяет нормы и требования, которым должны удовлетворять тележки с увеличенным межремонтным пробегом, с установленными износостойкими элементами по проекту М 1698 ПКБ ЦВ или восстановленные износостойкой наплавкой по технологическим инструкциям, разработанным или согласованным ВНИИЖТ и утверждённым в установленном порядке при выпуске вагонов из капитального и деповского ремонтов.
- 1.3 Износостойкие элементы по проекту М 1698 ПКБ ЦВ, применяемые при ремонте тележек с увеличенным пробегом:
- клин фрикционный чугунный чертёж М1698.00.002;
- планка фрикционная неподвижная толщиной 10 мм чертёж М1698.02.001;
- планка подвижная толщиной 6 мм чертёж М1698.02.004;
- прокладка в подпятник чертёж М 1698.01.005;
- прокладка сменная чертёж М 1698.02.100 СБ на опорную поверхность буксового проема боковой рамы (чертёж 100.00.002-1 или чертёж 100.00.002.-2);
- прокладка сменная чертёж М 1698.03.100 СБ на опорную поверхность буксового проема боковой рамы (чертёж 100.00.002-3, 100.00.002-4 или чертёж № 578.00.019-0) должны изготавливаться в соответствии с ТУ 32 ЦВ 2459-2007 ПКБ ЦВ ОАО «РЖД» «Износостойкие элементы для установки в узлы тележки типа 2 грузовых вагонов»; ТУ 3183-234-011124323-2007 «Клин фрикционный из серого чугуна для тележек грузовых вагонов».
- 1.4 Ремонт тележек с установкой износостойких элементов должен производиться одновременно на обеих тележках вагона.
- 1.5 На основании требований настоящего Руководства на всех вагоноремонтных предприятиях, производящих ремонт с установкой износостойких элементов, должен быть разработан местный технологический процесс.
- 1.6 Осмотр, освидетельствование и ремонт колесных пар производить в полном соответствии с требованиями «Инструкции по осмотру, освидетельствованию, ремонту и формированию вагонных колесных пар» ЦВ/3429.
 - 1.7 Осмотр и ревизию буксовых узлов колесных пар производить в

соответствии с требованиями «Инструктивных указаний по эксплуатации и ремонту вагонных букс с роликовыми подшипниками» 3 – ЦВРК.

- 1.8 Отремонтированное тормозное оборудование должно соответствовать требованиям, изложенным в «Инструкции по ремонту тормозного оборудования вагонов» ЦВ-ЦЛ-945.
- 1.9 Тележка модели 18-100 комплексно модернизированная установкой износостойких элементов компании «А. Стаки» США и колёсных пар с ремонтным профилем ИТМ-73 по проекту С 03.04 Киевского ПКТБ по соответствии с «Инструкцией вагонам, ремонтируется В грузовых ремонту эксплуатации тележек вагонов модели 18-100, модернизированных с **установкой** элементов компании «A.STUSKI» колёсных пар с нелинейным (ремонтным) профилем колёс ИТМ-73» «Инструкцией по комплексной модернизации тележек грузовых вагонов использованием износостойких элементов и колёс с ремонтным ИТМ-73».

Смешанная установка износостойких элементов, изготовленных по проектам М 1698 и С 03.04 не допускается.

Руководящий документ «Ремонт тележек 1.10 Настоящий 18-100 с установкой износостойких элементов в узлах трения» РД 32 ЦВ 072-2009 вводится взамен Руководящий документ «Инструкция по ремонту тележек грузовых вагонов модели 18-100 износостойких элементов в узлах трения» РД 32 ЦВ 072-2004. установкой

2 ОРГАНИЗАЦИЯ РЕМОНТНЫХ РАБОТ

- 2.1 Настоящее Руководство предусматривает организацию работ, при которой обеспечивается высококачественный ремонт литых деталей и узлов тележки модели 18-100 с установкой износостойких элементов по проекту М 1698 ПКБ ЦВ.
- 2.2 Ремонту с установкой износостойких элементов или износостойкой наплавкой подлежат следующие узлы и детали:
 - подпятник надрессорной балки;
 - наклонные плоскости надрессорной балки;
 - опорные и упорные поверхности буксовых проемов боковых рам тележки;
- фрикционный узел гасителя колебаний тележки: фрикционный клин и составная фрикционная планка;
 - корпус буксы.

Надрессорные балки и боковые рамы тележки модели 18-100 после обмывки, очистки от загрязнений, остатков перевозимого груза и разборки тележки подлежат ремонту.

- 2.3 Ремонт с установкой износостойких элементов литых деталей тележки производится на специально оборудованном участке. Рекомендуемый перечень технологической оснастки и оборудования приведен в приложении А.
- 2.4 Вагоноремонтное предприятие может использовать сварочное и механообрабатывающее оборудование, из имеющегося в наличии, обеспечивающее выполнение технологических операций в полном объеме.

- 2.5 На участке ремонта должны быть выделены рабочие места для выполнения:
- дефектации неразрушающими методами контроля боковых рам и надрессорных балок тележки;
- сварочных и наплавочных работ на надрессорных балках и боковых рамах тележки;
 - механической обработки на станочном оборудовании;
 - клепальных работ при постановке фрикционных планок;
 - слесарных работ.
- 2.6 На рабочих местах контроль выполненных работ осуществляется исполнителем, мастером, инспектором-приемщиком на вагоноремонтном заводе или приемщиком вагонов в вагонном депо.
- 2.7 На каждом рабочем месте на участке ремонта тележек модели 18-100 должна быть соответствующая выписка из Технологического процесса выполнения ремонтных работ.
- 2.8 Перечень нормативной и технической документации, используемой в Руководстве приведён в приложении Б.

3 ОХРАНА ТРУДА

- 3.1 Организация рабочих мест на участке ремонта тележек, выполнение всех видов работ, а также требования по охране труда исполнителей должны соответствовать «Правилам по охране труда при техническом обслуживании и ремонте грузовых вагонов и рефрижераторного подвижного состава ПОТ РО 32 ЦВ 400-96» в вагонных депо.
- 3.2 Для всех видов работ при ремонте тележки должны быть разработаны местные инструкции по охране труда с учетом ПОТ РО 32ЦВ-400-96, государственных стандартов, отраслевых стандартов и СНиПов. При ремонте тележек должны выполняться требования ГОСТ 12.3.002.

При техническом обслуживании и плановых видах ремонта тележек грузовых вагонов должны соблюдаться «Правила по охране труда при техническом обслуживании и ремонте грузовых вагонов в вагонном хозяйстве железных дорог» № 1063 р от 26.05.2006г.

- 3.3 Проходы и транспортные проезды должны быть свободными и иметь полосы безопасности.
- 3.4 Мастера и бригадиры, ответственные за выполнение требований по охране труда, обязаны лично проводить очередной и внеочередной инструктажи работников участка по технике безопасности с показом безопасных приемов работы.
- 3.5 Запасные части и материалы доставлять на производственный участок в производственной таре, отвечающей требованиям ГОСТ 12.3.010, а перемещать грузы должны в соответствии с требованиями ГОСТ 12.3.020
- 3.6 Применяемые при ремонте приспособления, инструмент, механизмы должны быть исправны. При выполнении наплавочных и сварочных работ применять средства индивидуальной защиты ГОСТ 12.4.011, ГОСТ 27574 и ГОСТ 27575.

- 3.7 При выполнении наплавочных и сварочных работ должны соблюдаться требования ГОСТ 12.3.003, ГОСТ 12.1.004.
- 3.8 Приточно-вытяжная вентиляция, вентиляционные установки участка ремонта тележек должны соответствовать требованиям ГОСТ 12.4.021, а также состояние воздушной среды на производственных участках должно соответствовать требованиям ГОСТ 12.1.005.
- 3.9 Мероприятия по ограничению шума должны отвечать требованиям ГОСТ 12.1.003.

4 РЕМОНТ НАДРЕССОРНОЙ БАЛКИ

- 4.1 Ремонт подпятника надрессорной балки.
- 4.1.1 После определения объема ремонта все дефекты подпятника надрессорной балки должны быть устранены.

При плановых видах ремонта разрешается заваривать трещины в подпятнике надрессорной балки. Суммарная длина трещин в подпятнике допускается не более 250 мм, если трещины кольцевые прерывистые, расположенные в разных секторах, на расстоянии от центра не ближе 80 мм.

Ранее установленные в подпятник износостойкие кольца (полукольца) удалить станочной обработкой.

Диаметр подпятника определять от верхней горизонтальной поверхности наружного бурта на глубине 10 мм с учетом конусности 1:12,5 (4 градуса 36 минут).

Подпятник с диаметром $302,5^{+1,5}$ мм не требует ремонта. Контроль диаметра подпятника надрессорной балки производить штангенциркулем ШЦ-III-400-0,1 ГОСТ 166-89.

Контроль глубины подпятника надрессорной балки производить штангеном подпятника проект Т914.06 ПКБ ЦВ рисунок 4.1.

- надрессорной балки, изготовленной до 1986 г с глубиной подпятника 25^{+1}_{-2} мм изношенные опорная поверхность, наружный и внутренний бурты подпятника восстанавливают согласно «Инструкции по сварке и наплавке при ремонте грузовых вагонов» разработанной ВНИИЖТ Инструкцией И ТИ-05-01-06/НБ износостойкой наплавкой c обеспечением 240 ... 300 НВ, с последующей станочной обработкой подпятника до чертёжных размеров с обеспечением конусности внутренней поверхности наружного бурта $302,5^{+1,5}$ мм на глубине 10 мм. 1:12,5 и диаметром
- 4.1.3 У надрессорной балки, изготовленной с 1986 г с глубиной подпятника 30^{+1}_{-2} мм с изношенными опорной поверхностью, наружным и внутренним буртами подпятника, наружный и внутренний бурты наплавляют износостойкой наплавкой согласно «Инструкции по сварке и наплавке при ремонте грузовых вагонов» и $TU-05-01-06/H\overline{b}$ с обеспечением твердости 240...300 HB.

Подпятник растачивается на глубину $36^{\pm 1}$ мм с обеспечением конусности внутренней поверхности наружного бурта 1:12,5 и диаметром $302,5^{+1,5}$ мм на глубине 10 мм.

На станочно обработанную плоскую опорную поверхность подпятника

устанавливается прокладка по чертежу М 1698.01.005 диаметром 298-1.3 мм.

4.1.4 При поступлении надрессорной балки с установленной ранее прокладкой, подпятник с глубиной $36^{\pm 1}$ мм, имеющий износы на наружном и внутреннем буртах, выработки наружного бурта от прокладки, наплавляются согласно «Инструкции по сварке наплавке ремонте И при грузовых ТИ-05-01-06/НБ износостойкой наплавкой обеспечением вагонов» И твердости 240 ... 300 НВ с последующей станочной обработкой согласно обеспечением конусности М 1698.01.000 СБ и внутренней 1:12,5 поверхности наружного бурта c последующей постановкой прокладки по чертежу М 1698.01.005.

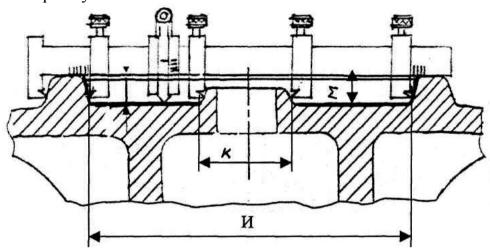


Рисунок 4.1 Схема контроля глубины подпятника штангеном подпятника Т 914.06.000 ТУ 32 ЦВ 2022-95

№ п/п	Наименование параметра	Обозначение	Нормативные параметра	Средство контроля
1.	Глубина подпятника, мм	М	25 ⁺¹ ₋₂ 30 ⁺¹ ₋₂	Штанген подпятника Т 914.06.000 ТУ 32 ЦВ 2022-95
2.	Диаметр подпятника, мм (на глубине 10 мм)	И	302,5+1.5	Штангенциркуль ШЦ-Ш-400-0,1 ГОСТ166-89
3.	Конусность упорной поверхности подпятника 1:12,5 (уклон 1:25)			Калибр для контроля конусности упорной поверхности подпятника 1:12,5 Т 1352.001 ПС
4.	Наружный диаметр внутреннего бурта, мм	К	77 -0,74	Штангенциркуль ШЦ-III-400-0,1; ШЦ-I - 125-0,1 ГОСТ166-89

- 4.1.5 Оставшаяся толщина опорной поверхности подпятника не менее 18 мм определяется ультразвуковыми толщиномерами типа УТ-93П, А 1207, А 1208, ТУЗ-1, ТУЗ-2 и других типов.
 - 4.1.6 При станочной обработке подпятника в месте сопряжения наружного

бурта с плоской опорной поверхностью подпятника должна быть обеспечена галтель радиусом 3-4 мм. Отсутствие галтели не допускается.

- 4.1.7 Прокладка (диск) по чертежу М 1698.01.005 диаметром 298-1,3 мм свободно устанавливается фаской вниз на опорную поверхность подпятника надрессорной балки, изготовленной после 1986 года и расточенной на глубину 36±1 мм. Допускается постановка прокладки с суммарным износом по толщине до 2 мм, но не более 1,5 мм на сторону.
- 4.1.8 Внутренний бурт подпятника восстанавливается наплавкой до чертежных размеров. Разрешается производить ремонт отверстия подпятника под шкворень с восстановлением внутреннего бурта постановкой втулки с приваркой её по наружному периметру сплошным швом в соответствии с требованиями ТК-231. Верхняя кромка внутреннего бурта или втулки должна располагаться от плоской опорной поверхности на высоте:
 - -5 мм у подпятника глубиной 25^{+1}_{-2} или 30^{+1}_{-2}
 - -11 мм у подпятника расточенного на глубину $36^{\pm 1}$ мм.
- 4.1.9 За базовую поверхность надрессорной балки при установке на станок принимать опорные поверхности, которыми надрессорная балка опирается на пружины рессорных комплектов.
- 4.1.10 При подкатке тележки под вагон в подпятник закладывается весом до 100 г одна из смазок: графитовая ГОСТ 3333-80, солидол ГОСТ 1033-79 с добавкой графита смазочного ГОСТ 8295-73.
 - 4.2 Ремонт наклонных плоскостей надрессорной балки.
- 4.2.1 Планки, ранее приваренные на наклонных плоскостях, удалить на изношенные станке. Наклонные плоскости с удаленными планками ИЛИ восстанавливают износостойкой наплавкой c обеспечением твердости 240...300 HB, согласно «Инструкции по сварке и наплавке при ремонте грузовых вагонов» и ТИ-05-01-06/НБ с последующей станочной обработкой до чертежных размеров. Износ наклонных плоскостей определяют шаблоном НП Т914.05 ПКБ ЦВ.

При всех видах ремонта разрешается:

- заварка трещин в углах между ограничительными буртами и наклонной плоскостью;
 - наплавка изношенных буртов при оставшейся толщине не менее 10 мм;
 - наплавка или приварка упорных ребер;
- заварка продольных трещин наклонной плоскости, не выходящих на ограничительные бурты.
- 4.2.2 Оставшаяся толщина наклонных поверхностей надрессорной балки не менее 7 мм определяется ультразвуковыми толщиномерами типа УТ-93П, А 1207, А 1208, ТУЗ-1, ТУЗ-2 и других типов.
 - 4.3 Ремонт скользунов надрессорной балки.
- 4.3.1 Колпак скользуна снимают при ремонте. Неисправный прилив (опора) для колпака скользуна согласно «Инструкции по сварке и наплавке при ремонте грузовых вагонов» ремонтируют сваркой, а с изломами приваркой новой части. Изношенную поверхность прилива для колпака скользуна восстанавливают наплавкой с последующей станочной обработкой до чертежных размеров. Высота прилива (опоры) для колпака скользуна после станочной обработки определяется

расстоянием от нижней плоскости надрессорной балки до верхней опорной поверхности скользуна, должна быть 315-6 мм.

4.3.2 При капитальном ремонте устанавливают новые колпаки скользунов по чертежам ПКБ ЦВ ОАО «РЖД» М 1698.01.100 СБ с прокладкой М1698.01.102 с твёрдостью 270...370НВ.

При деповском ремонте допускается повторная установка колпаков скользунов по чертежу М 1698.01.100 СБ с неравномерным максимальным износом плоской опорной поверхности до 2 мм.

При износе более 2 мм колпак скользуна заменить новым.

5 РЕМОНТ УЗЛА «КЛИН-ФРИКЦИОННАЯ ПЛАНКА» РЕССОРНОГО КОМПЛЕКТА

- 5.1 Установка составных фрикционных планок.
- 5.1.1 Фрикционные планки толщиной 16 мм заменяют на составные, состоящие из планки неподвижной толщиной 10 мм чертеж М 1698.02.001 и планки подвижной толщиной 6 мм чертёж М 1698.02.004.
- 5.1.2 При установке и креплении планки неподвижной чертеж М 1698.02.001, отверстия в боковой раме под заклепки должны быть диаметром 21^{+0,84} мм. Планки крепятся заклепками с потайной головкой диаметром 20 мм по ГОСТ 10300-80. Для крепления фрикционной планки толщиной 10 мм длина заклепки 58 мм. Усилие горячей клепки должно быть не менее 25 тс. Температура нагрева заклепки должна быть в пределах 1050-1100°C.

Неподвижные фрикционные планки в вертикальной плоскости должны быть не параллельны, расстояние между планками к низу должно увеличиваться, при чем каждая фрикционная планка должна иметь отклонение к низу в пределах от 2 до 5 мм. Фрикционные планки, приклепанные к площадкам, должны быть плотно притянуты к ним, при этом допускается:

- между сопрягаемыми поверхностями (в промежутках между заклепками) местные не плотности не более 1 мм;
- в зоне головок заклепок местный зазор на 1/3 окружности головки заклепки, при проверке которого щуп 1 мм не должен доходить до стержня заклепки;

Заклепки не должны выступать за рабочую поверхность планки. При наличии выступа его следует зачистить заподлицо с поверхностью планки.

5.1.3 При деповском ремонте допускается установка неподвижных планок с износом 1.5 мм по толщине со стороны её взаимодействия с подвижной планкой.

Не допускается постановка неподвижной планки, имеющей механические повреждения, трещины, отколы, изгибы.

Неподвижные фрикционные планки толщиной 10 мм с одной и более ослабленными заклепками переклепываются.

- 5.1.4 Подвижная планка толщиной 6 мм чертёж М1698.02.004 или чертёж М1698.02.003, имеющая механические повреждения, трещины, отколы, суммарный износ по толщине более 2 мм или более 1,5 мм на сторону, заменяется при ремонте на новую планку.
- 5.1.5 При капитальном ремонте неподвижные и подвижные планки заменяют на новые.

5.2 Фрикционные клинья устанавливают чугунные чертеж М 1698.00.002. При деповском ремонте допускаются суммарные износы наклонной и вертикальной плоскостей клина не более 3 мм или не более 2 мм одной из сторон. При капитальном ремонте клинья заменяют на новые.

6 РЕМОНТ БОКОВОЙ РАМЫ

- 6.1 Упорные поверхности боковой рамы в буксовом проеме подлежат восстановлению при плановых видах ремонта до чертежных размеров.
- 6.2 Не допускается ремонт боковой рамы, у которой в буксовом проёме опорная поверхность имеет местный, канавкообразный износ более 2 мм в тело рамы (максимальная ширина канавки 20 мм, максимальная длина канавки равна ширине опорной поверхности).
- 6.3 Изношенные вертикальные направляющие плоскости в буксовом проеме (упорные поверхности) восстанавливаются износостойкой наплавкой с обеспечением твердости $240 \dots 300 \text{ HB}$ с последующей станочной обработкой до чертежных размеров (335^{+3}_{-1} мм).
- 6.4 При комплектации тележек новыми боковыми рамами приливы на опорных плоскостях в буксовых проёмах обработать на станке до остаточной высоты не более 3 мм. У ремонтируемых боковых рам приливы в буксовых проёмах обработать на станке на максимальную величину износа. При этом остаточная высота приливов должна быть не более 3 мм. Проникновение инструмента в тело боковой рамы не допускается. Прокладки сменные установить в обоих буксовых проёмах. На опорные поверхности с высотой приливов не более 3 мм в буксовые проёмы боковой рамы черт. 100.00.002-1 или 100.00.002.-2 установить прокладки сменные черт. М 1698.02.100 СБ, а на боковую раму черт.100.00.002-3, черт.100.00.002.-4 или черт. № 578.00.019-0 установить прокладки сменные черт. М 1698.03.100 СБ.
- 6.5 При поступлении в ремонт боковых рам, на опорных поверхностях которых в буксовых проёмах были установлены прокладки сменные по черт. М 1698.02.100 СБ или М 1698.03.100 СБ, прокладки снимают, боковые рамы дефектоскопируют. При деповском ремонте на исправные боковые рамы устанавливают прокладки сменные, не имеющие трещин, механических повреждений, отколов. Допускается постановка прокладки с износом пластины не более 2 мм. При капитальном ремонте на опорные поверхности устанавливают новые прокладки сменные по черт. М 1698.02.100 СБ или М 1698.03.100 СБ.
- 6.6 При поступлении в ремонт боковых рам, изготовленных по чертежам УВЗ 100.00.002-3 и 100.00.002-4 с приваренными планками на опорных поверхностях, планки удаляют на станке и после дефектоскопирования боковых рам на их опорные поверхности устанавливают сменные прокладки.
- 6.7 Неровности в переходе от обработанной поверхности к необработанной по радиусу 55 мм необходимо зачистить.
- 6.8 Для установки на боковую раму износостойкую прокладку плотно прижимают к опорной поверхности с помощью струбцины или специального приспособления. Более длинные лапки корпуса прокладки располагают против технологических отверстий на стенках боковой рамы. Указанные «лапки»

сгибают на цилиндрической оправке (монтировке) и затем заправляют в технологические отверстия ударами молотка. Короткие «лапки» корпуса загибают по полке боковой рамы ударами молотка через оправку. После загиба «лапок» перемещения прокладки вдоль боковой рамы должны быть не более ± 10 мм, а поперек боковой рамы не более ± 5 мм.

6.9 При плановых ремонтах грузовых вагонов для инструментального обмера боковых рам тележек прокладки сменные, установленные в буксовых проемах рам, снимаются.

Повторная установка прокладок сменных не допускается при наличии:

- трещин на корпусе прокладки или на износостойкой пластине;
- отколов на износостойкой пластине;
- трещин сварного шва между износостойкой пластиной и корпусом прокладки;
- неравномерного износа опорной поверхности износостойкой пластины относительно неизношенной её части поверхности более 2 мм;
- 6.10 Тележки, оборудованные износостойкими прокладками, должны взаимодействовать с корпусами букс, восстановленными до чертежных размеров.
- 6.11 Перед началом клёпальных работ поверхность боковой рамы, прилегающая к поверхности фрикционной планки, допускается зачистить шлифовальной машинкой, для обеспечения плотного прилегания фрикционной планки к привалочной поверхности. Обработанная поверхность должна соответствовать \sqrt{Ra} 12,5 и уширение в нижней части каждой привалочной поверхности от 2 до 5 мм. Размеры проема в верхней части должны быть 668_{-6} мм.
- 6.12 Комплектация тележек одного вагона, производится боковыми рамами со сменными прокладками во всех буксовых проемах при обработанной высоте прилива не более 3 мм.
- 6.13 При плановых видах ремонта в узел подвески тормозного башмака установить новые волокнитовые или фенопластовые втулки диаметром (45, 46 и 47 мм) в зависимости от внутреннего диаметра кронштейна на боковой раме.

7 РЕМОНТ КОРПУСОВ БУКС

7.1 Изношенные корпуса букс при плановых видах ремонта восстанавливаются согласно «Инструкции по сварке и наплавке при ремонте грузовых вагонов» и ТИ-05-02/01Б до чертежных размеров.

8 ИЗМЕРЕНИЕ И ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ДЛЯ ВЫПОЛНЕНИЯ НАПЛАВОЧНЫХ РАБОТ И МЕХАНИЧЕСКОЙ ОБРАБОТКИ

- 8.1 После ремонта тележек грузовых вагонов модели 18-100 с постановкой износостойких элементов производятся дополнительные измерения:
 - корпуса буксы после ремонта;
- мест постановки износостойких деталей в подпятнике и на наклонных плоскостях надрессорной балки;

- мест постановки фрикционных планок;
- мест постановки прокладок сменных.
- 8.2 Для измерения подпятника надрессорной балки применяются штанген подпятника Т 914.06.000 ТУ 32 ЦВ 2022-95, штангенциркуль ШЦ-III-400-0,1, ШЦ-I 125-0,1 ГОСТ166-89.
- 8.3 Контроль длины опорных поверхностей призмы надрессорной балки и контроль углов наклона боковых поверхностей призм выполняется шаблоном НП Т 914.05.000 ТУ 32 ЦВ 2021-95.
- 8.4 Контроль размера между направляющими буртами призмы выполняется шаблоном Т 914.007 ТУ 32 ЦВ 2023-95 или штангенциркулем ШЦ-1-400-0.1 ГОСТ 166-89.
- 8.5 Проверка износов подвижных и неподвижных фрикционных планок рессорного комплекта производится на плите поверочной ГОСТ 10905-86, комплектом щупов ТУ 2-034-0221197-011-91, линейкой.
- 8.6 Контроль размера между фрикционными планками, уширения и износ неподвижных фрикционных планок определяется штангеном $\Phi\Pi$ T914.02.000 ТУ 32 ЦВ 2019-95.
- 8.7 Плотность прилегания неподвижных фрикционных планок проверяется с помощью набора щупов № 4 ТУ 2-034-0221197-011-91.
- 8.8 Длина основания фрикционного клина определяется при помощи шаблона Т 914.09.000 ТУ 32 ЦВ 2430-96. Этим же шаблоном определяется величина угла 45° наклонной плоскости.
- 8.9 Измерение высоты прилива и канавкообразный износ боковой рамы в буксовом проеме производится штангенциркулем ШЦ-1-125-0,1 ГОСТ 166-89.
- 8.10 Измерение наплавленных мест корпуса буксы до и после ремонта производится шаблоном Т 1328 ПКБ ЦВ.
- 8.11 Порядок проведения измерений узлов и деталей, на которые не установлены износостойкие элементы, изложен в РД 32 ЦВ 050-2005, допускаемые размеры узлов и деталей при ремонте тележек модели 18-100 с установкой износостойких элементов указаны в настоящем Руководстве.

9 ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ НАПЛАВОЧНЫХ И СВАРОЧНЫХ РАБОТ

- 9.1 Сварочные и наплавочные работы на надрессорных балках, боковых рамах производят в соответствии с «Инструкцией по сварке и наплавке при ремонте грузовых вагонов», Инструкциями, разработанными ВНИИЖТ ТИ-05-01-06/НБ и ТИ-05-02/01Б на специальных сварочных позициях, оборудованных кантователями, электросварочным и газосварочным оборудованием и другими приспособлениями.
- 9.2 Наплавке подвергаются поверхности деталей для последующей станочной или механической обработки до чертежных размеров.
- 9.3 Наплавка восстанавливаемых поверхностей деталей тележки выполняется износостойкими сварочными материалами:
- 9.3.1 Износостойкая автоматическая наплавка под флюсом: сварочная проволока марки Св-10ХГ2СМФ ТУ 0805-001-18486807-99 или порошковая проволока марки ПП-АН 180МН ТУ 127400-002-70182818-05;

- флюс АН-348А или АН-60 ГОСТ 9087-69;
 - 9.3.2 Механизированная или автоматическая наплавка в защитном газе:
- порошковая проволока марки ПП-АН180МН ТУ 127400-002-70182818-05 или сварочная проволока марки Св-10ХГ2СМФ ТУ 0805-001-18486807-99;
 - двуокись углерода 1 сорта ГОСТ 8050-78.
 - 9.3.3 Ручная наплавка обмазанными электродами:
 - электроды марки АНП-13 ТУ 1272-035-01124328-96;
- 9.3.4 Допускается применение других марок наплавочных материалов обеспечивающих при наплавке твердость 240-300 НВ, если они предусмотрены нормативно-технической документацией, согласованной ВНИИЖТ и утверждённой в установленном порядке.
- 9.4 Для ремонта деталей сваркой и наплавкой без требований к износостойкости используются следующие сварочные материалы:
 - 9.4.1 Ручная сварка:
 - электроды типа Э-50 А ГОСТ 9467-75 (марки УОНИ-13/55 и другие).
 - 9.4.2 Механизированная сварка:
 - проволока сварочная марки Св-08Г2С ГОСТ 2246-70;
 - двуокись углерода 1 сорта ГОСТ 8050-78.
- 9.5 Рабочие места производства наплавки и сварки должны быть оснащены кантователями, вращателями, грузоподъёмным оборудованием и местной вытяжной вентиляцией.

10 ТРЕБОВАНИЯ К ДЕТАЛЯМ, УСТАНАВЛИВАЕМЫМ ПРИ РЕМОНТЕ С УСТАНОВКОЙ ИЗНОСОСТОЙКИХ ЭЛЕМЕНТОВ ТЕЛЕЖКИ МОДЕЛИ 18-100

10.1 При выпуске всех грузовых вагонов из плановых видов ремонта отремонтированные тележки должны быть укомплектованы надрессорными балками и боковыми рамами, обеспечивающими эксплуатацию вагона до следующего планового ремонта или его исключения из инвентаря по сроку службы. В соответствии с ОСТ 32.183-2001 срок службы боковых рам и надрессорных балок из сталей 20ГФЛ, 20ГЛ и 20ГТЛ (указанных на изделии) установлен 32 года, а для рам и балок из стали 20ХГНФТЛ – 35 лет.

Разрешается комплектование тележки с использованием литых деталей с продлённым сроком службы и деталей в пределах назначенного срока службы.

Вагоноремонтным предприятиям при выпуске грузовых вагонов из ремонта допускается подкатывать под один вагон тележки, скомпонованные из деталей с продлёнными сроками службы и деталей в пределах назначенного срока службы.

При входном контроле проверяются геометрические размеры износостойких деталей (М 1698.01.005, М 1698.02.001, М 1698.02.003, М1698.00.002, М 1698.02.100 СБ или М 1698.03.100 СБ) материалы, из которых они изготовлены, твердость на рабочих поверхностях и другие параметры на соответствие указанным в проекте М 1698 ПКБ ЦВ и настоящем Руководстве.

Твердость измеряется твердомером типа ТЭМП 3 по ГОСТ 9012-59 или ГОСТ 9013-59.

10.2 Износостойкие контактные пластины, накладки, закрепляемые электросваркой, изготавливаются из листового проката марки 20ХГСА ГОСТ

4543 с термообработкой до твердости 270 ... 370 НВ.

Износостойкие контактные пластины, накладки, закрепляемые не электросваркой, должны изготавливаться из листового проката марки 30ХГСА ГОСТ 11269 с термообработкой до твердости 320 ... 400 НВ.

10.3 Износостойкие элементы должны иметь клейма предприятияизготовителя и даты изготовления. Клейма устанавливают в местах, не повреждаемых в эксплуатации или в местах, указанных в чертежах.

11 КОНТРОЛЬ КАЧЕСТВА РЕМОНТА ТЕЛЕЖЕК С УСТАНОВКОЙ ИЗНОСОСТОЙКИХ ЭЛЕМЕНТОВ И ПРИЕМКА ТЕЛЕЖЕК ПОСЛЕ РЕМОНТА

- 11.1 Контроль качества ремонта тележек с установкой износостойких элементов в узлах трения на литых деталях и тележки в целом осуществляется бригадиром, мастером, старшим мастером и другими должностными лицами в установленном порядке.
- 11.2 Периодический контроль за качеством ремонта тележек должны осуществлять руководители вагоноремонтных предприятий, технологи, которые также должны обеспечивать выполнение технологии ремонта тележек с установкой износостойких элементов в полном объеме.
- 11.3 Отремонтированные узлы и детали тележки должны соответствовать требованиям настоящего Руководства и комплекта документации М 1698.00.000, требованиям «Ремонта тележек грузовых вагонов» РД 32 ЦВ 052-2009, «Руководящему документу по неразрушающему контролю деталей вагонов» РД 32 174-2001г., «Руководящему документу ПО феррозондовому неразрушающего контроля деталей вагонов» ΡД 32 149-2000г. «Руководящему документу по вихревому методу неразрушающего контроля деталей вагонов» РД 32 150-2000 г., «Руководящему документу по магнитнометоду порошковому неразрушающего контроля деталей грузовых пассажирских вагонов» РД 32 159-2000 г, «Инструкции по неразрушающему контролю литых деталей тележек грузовых вагонов модели продлении срока службы» ТИ ЦДРВ -32-002-2008.

При выпуске грузовых вагонов из плановых видов ремонта с установкой износостойких элементов по проекту М 1698 на тележках модели 18-100, обеспечивающих межремонтный пробег, устанавливаемый в зависимости от типа вагона, производить подкатку колесных пар с толщиной обода колеса не менее 30 мм при капитальном ремонте и не менее 27 мм при деповском ремонте.

Качество ремонта определяется визуально и с применением шаблонов

- Т 914 ПКБ ЦВ «Альбом чертежей средств измерений и СДК параметров тележек грузовых вагонов».
- 11.4 Клейма и знаки маркировки должны быть нанесены на детали тележки после завершения ремонтных работ, приемки их руководителями участков и приемщиком вагонов в депо, работниками ОТК и инспектором приемщиком на заводе.
 - 11.4.1 Клейма наносить на каждую надрессорную балку (с двух сторон) и

боковую раму на участке от начала прилива выше приемочных клейм в соответствии с «Методикой постановки клейм принадлежности государству на составные части вагонов» 1995 г.

При продлении срока службы литых деталей тележек на надрессорной балке и боковой раме тележки в местах постановки клейм наносятся знаки: «ПСС», дата и условный номер вагоноремонтного предприятия, проводившего диагностирование этих деталей.

11.4.2 На тележках, признанных годными после ремонта с установкой износостойких элементов ставятся клейма букв «РМ», высотой 70 мм, которые наносятся белой краской в прямоугольник (100 х 100 мм) на верхнем поясе консольной части надрессорной балки рядом с клеймами о производстве плановых видов ремонта.

12 ГАРАНТИЯ РЕМОНТНЫХ ПРЕДПРИЯТИЙ НА РЕМОНТ ТЕЛЕЖКИ МОДЕЛИ 18-100 С УСТАНОВКОЙ ИЗНОСОСТОЙКИХ ЭЛЕМЕНТОВ

- 12.1 Вагонные депо, вагоноремонтные заводы несут гарантийную ответственность за качество ремонта тележки модели 18-100 с установкой износостойких элементов в узлах трения, изготовленных по проекту М 1698.00.000 и в соответствии с требованиями данного Руководства.
- 12.2 Безремонтная эксплуатация тележек с установленными износостойкими элементами в узлах трения должна обеспечивать пробег вагона в соответствии с «Положением о системе технического обслуживания и ремонта грузовых вагонов, допущенных к обращению на железнодорожные пути общего пользования в международном сообщении».

13 ВЫХОДНОЙ КОНТРОЛЬ ТЕЛЕЖЕК, ОТРЕМОНТИРОВАННЫХ С УСТАНОВКОЙ ИЗНОСОСТОЙКИХ ЭЛЕМЕНТОВ

13.1 Выходной контроль отремонтированных тележек производить по окончании планового вида ремонта и после подкатки под вагон с обязательной записью в «Журнале приемки отремонтированных тележек грузовых вагонов формы ВУ-32».

Тележка должна быть укомплектована боковыми рамами, с разницей баз не более 2 мм.

- 13.2 При деповском ремонте допускается:
- установка неподвижной фрикционной планки с максимальным износом по толщине 1,5 мм;
- установка подвижной фрикционной планки с максимальным суммарным износом по толщине (с двух сторон) до 2 мм, но не более 1,5 мм с одной стороны;
- установка чугунного клина с суммарным износом (наклонная и вертикальная плоскости) до 3 мм, но не более 2 мм одной из сторон;
- установка износостойкой прокладки с механическим креплением к опорной поверхности в буксовом проеме боковой рамы с износостойкой пластиной с максимальным неравномерным износом опорной поверхности

относительно неизношенной ее части до 2 мм;

- установка прокладки в подпятник фаской вниз с суммарным износом по толщине (с двух сторон) до 2 мм, но не более 1,5 мм с одной стороны.
- 13.3 При капитальном ремонте устанавливаются новые:
- составные фрикционные планки (подвижные и неподвижные);
- клинья чугунные;
- износостойкие прокладки.
- 13.4 Выходному контролю подвергают все тележки, на которые установлены износостойкие элементы. При этом проверяют:
- положение каждого клина относительно нижней опорной поверхности надрессорной балки. Клин должен плотно прилегать к подвижной планке и наклонной поверхности надрессорной балки. При деповском ремонте завышение клина не допускается, а занижение клина не более 12 мм. При капитальном ремонте клин должен быть занижен на 4 ... 12 мм.
- прилегание неподвижной фрикционной планки к привалочной поверхности боковой рамы. Местные зазоры допускаются не более 1 мм;
- прилегание планки подвижной к неподвижной. Местные зазоры допускаются не более 1 мм;
- прилегание прокладки сменной на опорную поверхность буксы. Местные зазоры допускаются не более 1 мм;
 - -суммарный зазор в буксовом проёме вдоль тележки:
 - при деповском ремонте 5 ... 14 мм
 - при капитальном ремонте − 5 ... 12 мм;
 - -суммарный зазор в буксовом проёме поперек тележки:
 - при деповском ремонте − 5 ... 13 мм,
 - при капитальном ремонте − 5 ... 11 мм;

Приложение А

(рекомендуемое)

ПЕРЕЧЕНЬ ТЕХНОЛОГИЧЕСКОЙ ОСНАСТКИ, ПРИМЕНЯЕМОЙ ПРИ РЕМОНТЕ ТЕЛЕЖКИ С УСТАНОВКОЙ ИЗНОСОСТОЙКИХ ЭЛЕМЕНТОВ МОДЕЛИ 18-100

Наименование технологической операции	Вид оборудования	Наименование оборудования
1. Мойка и разборка тележек	Подъемно-транспортное	Кран-балка расчетной грузо- подъемности Конвеер перемещения теле- жек типа Т198М или Т44602М ПКБ ЦВ или 12.824 ГОСНИТИ Рязань Подъемно-поворотное уст- ройство Устройство подачи тележек в моечную машину
	Моечное	Моечная машина типа Т1285М ПКБ ЦВ; Т446.01М ПКБ ЦВ
	Разборочно-сборочное	Стенд разборки тележки типа Т1308М ПКБ ЦВ
2. Неразрушающий контроль, средства измерений и диагностики	Средства измерения и диаг- ностики	Стенд для акустико- эмиссионного метода контро- ля боковых рам и надрессор- ных балок (ПКБ ЦВ) Стенд для измерения и сортировки пружин типа "Лазер-М" Атоматизированная установ- ка контроля геометрических параметров фрикционных клиньев типа "КЛИН-М" Электронный твердомер Электронный толщиномер Стенд для выходного контро- ля параметров тележки в сбо- ре после ремонта
3. Клепка фрикционных планок	Клепальное	Установка для нагрева закле- пок Гидравлическая скоба для клепки
4. Сварка и наплавка	Сварочно-наплавочное	Установка для наплавки буксовых проемов боковых рам Кантователь боковых рам типа Т1285М ПКБ ЦВ Установка для наплавки надрессорных балок Кантователь надрессорных

		балок типа Т130806М ПКБ ЦВ Устройство для местного нагрева боковой рамы Устройство для нагрева подпятника Устройство для нагрева наклонных поверхностей надрессорной балки
5. Механическая обработка	Станочное	Станки: для обработки наклонных поверхностей надрессорной балки для обработки подпятника для обработки буксового проема боковой рамы для обработки фрикционных клиньев Установка для запрессовки втулок в отверстия в боковых рамах
6. Ремонт соединительных балок 8-ми осных цистерн	Подъемно-транспортное Электро-газосварочное	Кран-балка расчетной грузо- подъемности Кантователь Электрокар Электросварочный пост
7. Восстановление лакокра-	Окрасочное	Газосварочное оборудование Камеры для окраски
сочного покрытия		деталей тележки
8. Выходной контроль	Контрольно-измерительные	Стенд выходного контроля параметров тележки в сборе
9. Управление производственным процессом и сдачаприемка тележек после ремонта	Информационное	АРМ оператора тележечного участка в составе АСУ ВЧД.

Приложение Б

(справочное) ПЕРЕЧЕНЬ НОРМАТИВНОЙ И ТЕХНИЧЕСКОЙ ДОКУМЕНТАЦИИ ИСПОЛЬЗУЕМОЙ В РУКОВОДСТВЕ

Обозначение	Наименование	
ΓΟCT 12.1.003-83	Шум. Общие требования безопасности	
ΓΟCT 12.1.004-91	Пожарная безопасность. Общие требования	
ГОСТ 12.1.005-88	Общие санитарно-гигиенические требования к воздуху	
	рабочей зоны	
FOCT 12 2 002 75	Процессы производственные. Общие требования	
ГОСТ 12.3.002-75	безопасности	
ГОСТ 12.3.003-86	Работы электросварочные. Требования безопасности	
ГОСТ 12.3.010-82	Тара производственная. Требования безопасности при	
1001 12.3.010-82	эксплуатации	
ГОСТ 12.3.020-80	Процессы перемещения грузов на предприятиях. Общие	
1001 12.3.020-00	требования безопасности	
ГОСТ 12.4.011-89	Средства защиты работающих. Общие требования и	
1001 12.4.011-09	классификация	
ГОСТ 12.4.021-75	Системы вентиляционные. Общие требования	
ГОСТ 166-89	Штангенциркули. Технические условия	
ГОСТ 4543-71	Прокат из легированной конструкционной стали.	
1001 4343-71	Технические условия	
ГОСТ 10300-80	Заклепки с потайной головкой классов точности В и С.	
100110300-00	Технические условия	
	Прокат листовой и широкополосный универсальный,	
ГОСТ 11269-76	специального назначения, из конструкционной легированной	
	высококачественной стали. Технические условия	
ГОСТ 14771-76	Дуговая сварка в защитном газе. Соединения сварные.	
100111//11/0	Основные типы, конструктивные элементы и размеры	
ГОСТ 27574-87	Костюмы женские от защиты от общих производственных	
10012/0/10/	загрязнений. Технические условия	
	Костюмы мужские от защиты от общих производственных	
ГОСТ 27575-87	загрязнений и механических воздействий. Технические	
TV 2 024 0221107 014 01	условия	
ТУ 2-034-0221197-011-91	Набор щупов № 4	
TEX. 14. 122. 102.05	Сталь толстолистовая и широкополосная универсальная,	
ТУ 14-133-183-95	конструкционная, легированная, высококачественная	
FOCT166.00	специального назначения	
ΓΟCT166-89	Штангенциркуль ШЦ-Ш-400-0,1; ШЦ-І-125-0,1	
T 914.02.000	Штанген ФП	
ТУ 32 ЦВ 2019-95		
T 914.05.000	НП надрессорной балки	
ТУ 32 ЦВ 2021-95 Т 914.06.000		
ТУ 32 ЦВ 2022-95	Штанген подпятника	
T 1328.00.000		
ТУ 32 ЦВ 2503-2000	Приспособление для контроля размеров корпуса буксы	
T 914.004		
ТУ 32 ЦВ 2023-95	Шаблон буксового проема	
T 914.09.000		
ТУ 32 ЦВ 2430-96	Шаблон фрикционного клина	
ТУ 32 ЦВ 2459-2007	Износостойкие элементы для установки в узлы тележки	
13 34 ЦD 4437-4007	тізпосостойкие элементы для установки в узлы тележки	

	типа 2 грузовых вагонов
РД 32 ЦВ 050-2005	Методика выполнения измерений надрессорной балки, боковых рам, пружин и рессорного комплекта при проведении плановых видов ремонта тележек модели 18-100
РД 32 ЦВ 052-2008	Инструкция по ремонту тележек грузовых вагонов. Руководящий документ
M 1698.00.000	Износостойкие элементы для установки в узлы тележки типа 2 грузовых вагонов
ПОТ РО 32 ЦВ-400-96	Правила по охране труда при техническом обслуживании и ремонте грузовых вагонов и рефрижераторного подвижного состава
ТИ-05-01-06/НБ ВНИИЖТ	Унифицированная технологическая инструкция по восстановлению износостойкой наплавкой надрессорных балок грузовых вагонов.
ЦВ/3429 Согласованно на заседании вагонной Комиссии (Протокол от 11-12.03.98г., г. Москва, п. 21)	Инструкция по осмотру, освидетельствованию, ремонту и формированию вагонных колесных пар
ЦВ - ЦЛ - 945 Согласованно на заседании вагонной Комиссии (Протокол от 18-20.112003г, г.Москва, п.8.1)	Инструкция по ремонту тормозного оборудования вагонов
3 – ЦВРК Согласованно на заседании вагонной Комиссии (Протокол от 15-16.01.2003г., п. 12)	Инструктивные указания по эксплуатации и ремонту вагонных букс с роликовыми подшипниками с изменениями и дополнениями
ТИ ЦДРВ -32-002-2008 Утверждена Советом по железнодорожному транспорту г.Худжанд (республика Таджикистан) 2008г	Инструкции по неразрушающему контролю литых деталей тележек грузовых вагонов модели 18-100 при продлении срока службы
Сорок восьмым заседанием Совета по железнодорожному транспорту (Протокол от 29-30 мая 2008г., п. 9.5, направлена железнодорожным администрациям письмом ДЖ-543 от 08.04.2009г.)	Инструкции по сварке и наплавке при ремонте грузовых вагонов
ТИ-05-02-01/Б ВНИИЖТ	Технологическая инструкция по восстановлению наплавкой изношенных поверхностей корпусов букс грузовых вагонов
РД 32.149-2000 ГУП ВНИИЖТ «Микроакустика» Согласован на заседании вагонной Комиссии (Протокол от 05-07.04.200г, г.Москва, п.7.4)	Феррозондовый метод неразрушающего контроля деталей вагонов. Руководящий документ
РД 32.150-2000 ГУП ВНИИЖТ «Микроакустика» Согласован на заседании вагонной Комиссии (Протокол	Вихретоковый метод неразрушающего контроля деталей вагонов. Руководящий документ

от 05-07.04.200г, г.Москва,	
п.7.4)	
РД 32.159-2000 ГУП ВНИИЖТ	Магнито-порошковый метод неразрушающего контроля
«Микроакустика»	деталей вагонов. Руководящий документ
Согласован на заседании	
вагонной Комиссии (Протокол	
от 05-07.04.200г, г.Москва,	
п.7.4)	
РД 32.174-01 ГУП ВНИИЖТ	Неразрушающий контроль деталей вагонов. Общие
«Микроакустика»	положения, Руководящий документ
Согласован на заседании	
вагонной Комиссии (Протокол	
от 05-07.04.200г, г.Москва,	
п.7.4)	